176 research outputs found

    Fast imaging of filaments in the X-point region of Alcator C-Mod

    Get PDF
    A rich variety of field-aligned fluctuations has been revealed using fast imaging of DĪ±emission from Alcator C-Mod's lower X-point region. Field-aligned filamentary fluctuations are observed along the inner divertor leg, within the Private-Flux-Zone (PFZ), in the Scrape-Off Layer (SOL) outside the outer divertor leg, and, under some conditions, at or above the X-point. The locations and dynamics of the filaments in these regions are strikingly complex in C-Mod. Changes in the filamentsā€™ generation appear to be ordered by plasma density and magnetic configuration. Filaments are not observed for plasmas with n/nGreenwaldā‰² 0.12 nor are they observed in Upper Single Null configurations. In a Lower Single Null with 0.12 ā‰² n/nGreenwald ā‰² 0.45 and Bxāˆ‡B directed down, filaments typically move up the inner divertor leg toward the X-point. Reversing the field direction results in the appearance of filaments outside of the outer divertor leg. With the divertor targets ā€œdetachedā€, filaments inside the LCFS are seen. These studies were motivated by observations of filaments in the X-point and PFZ regions in MAST, and comparisons with those observations are made. Keywords: Alcator C-Mod; Turbulence; Divertor; X-point; Filament

    Assessment of X-point target divertor configuration for power handling and detachment front control

    Get PDF
    A study of long-legged tokamak divertor configurations is performed with the edge transport code UEDGE (Rognlien et al., J. Nucl. Mater. 196, 347, 1992). The model parameters are based on the ADX tokamak concept design (LaBombard et al., Nucl. Fusion 55, 053020, 2015). Several long-legged divertor configurations are considered, in particular the X-point target configuration proposed for ADX, and compared with a standard divertor. For otherwise identical conditions, a scan of the input power from the core plasma is performed. It is found that as the power is reduced to a threshold value, the plasma in the outer leg transitions to a fully detached state which defines the upper limit on the power for detached divertor operation. Reducing the power further results in the detachment front shifting upstream but remaining stable. At low power the detachment front eventually moves to the primary X-point, which is usually associated with degradation of the core plasma, and this defines the lower limit on the power for the detached divertor operation. For the studied parameters, the operation window for a detached divertor in the standard divertor configuration is very small, or even non-existent; under the same conditions for long-legged divertors the detached operation window is quite large, in particular for the X-point target configuration, allowing a factor of 5ā€“10 variation in the input power. These modeling results point to possibility of stable fully detached divertor operation for a tokamak with extended divertor legs.United States. Department of Energy (Contract DE-AC52-07NA27344

    Heat-flux footprints for I-mode and EDA H-mode plasmas on Alcator C-Mod

    Get PDF
    IR thermography is used to measure the heat flux footprints on C-Modā€™s outer target in I-mode and EDA H-mode plasmas. The footprint profiles are fit to a function with a simple physical interpretation. The fit parameter that is sensitive to the power decay length into the SOL, Ī»[subscript SOL], is ~1ā€“3Ɨ larger in I-modes than in H-modes at similar plasma current, which is the dominant dependence for the H-mode Ī»[subscript SOL]. In contrast, the fit parameter sensitive to transport into the private-flux-zone along the divertor leg is somewhat smaller in I-mode than in H-mode, but otherwise displays no obvious dependence on I[subscript p], B[subscript t], or stored energy. A third measure of the footprint width, the ā€œintegral widthā€, is not significantly different between H- and I-modes. Also discussed are significant differences in the global power flows of the H-modes with ā€œfavorableā€ āˆ‡B drift direction and those of the I-modes with ā€œunfavorableā€ āˆ‡B drift direction.United States. Dept. of Energy (Cooperative Agreement DE-FC02-99-ER54512

    Effect of N2, Ne and Ar seeding on Alcator C-Mod H-mode confinement

    Get PDF
    The mitigation of divertor heat fluxes is an active topic of investigation on existing tokamaks. One approach uses radiation, both inside and outside the last closed flux surface (LCFS), to convert plasma thermal energy, usually directed towards dedicated plasma facing components, to soft X-ray and ultraviolet radiation, spread over a much larger surface area. Recent enhanced D-Ī± H-mode experiments on Alcator C-Mod varied the ICRF input power and radiative power losses via impurity seeding to demonstrate that normalized energy confinement depends strongly on the difference between input power and the radiated power inside the LCFS. These investigations also show that when seeded with either Ne or N2, a factor of two and higher reduction in outer divertor heat flux is achieved while maintaining H[subscript 98,y2] āˆ¼ 1.0. Conversely, when seeding with Ar, confinement is limited to H[subscript 98,y2] āˆ¼ 0.8 for a similar level of exhaust power.United States. Dept. of Energy (DOE Contract Number DEFC0299ER54512

    Characterization of onset of parametric decay instability of lower hybrid waves

    Get PDF
    The goal of the lower hybrid current drive (LHCD) program on Alcator C-Mod is to develop and optimize ITER-relevant steady-state plasmas by controlling the current density profile. Using a 4Ɨ16 waveguide array, over 1 MW of LH power at 4.6 GHz has been successfully coupled to the plasmas. However, current drive efficiency precipitously drops as the line averaged density (nĢ„ e ) increases above 10[superscript 20]m[superscript āˆ’3]. Previous numerical work shows that the observed loss of current drive efficiency in high density plasmas stems from the interactions of LH waves with edge/scrape-off layer (SOL) plasmas [Wallace et al., Physics of Plasmas 19, 062505 (2012)]. Recent observations of parametric decay instability (PDI) suggest that non-linear effects should be also taken into account to fully characterize the parasitic loss mechanisms [Baek et al., Plasma Phys. Control Fusion 55, 052001 (2013)]. In particular, magnetic configuration dependent ion cyclotron PDIs are observed using the probes near nĢ„[subscript e]ā‰ˆ1.2Ɨ10[superscript 20]m[superscript āˆ’3] . In upper single null plasmas, ion cyclotron PDI is excited near the low field side separatrix with no apparent indications of pump depletion. The observed ion cyclotron PDI becomes weaker in inner wall limited plasmas, which exhibit enhanced current drive effects. In lower single null plasmas, the dominant ion cyclotron PDI is excited near the high field side (HFS) separatrix. In this case, the onset of PDI is correlated with the decrease in pump power, indicating that pump wave power propagates to the HFS and is absorbed locally near the HFS separatrix. Comparing the observed spectra with the homogeneous growth rate calculation indicates that the observed ion cyclotron instability is excited near the plasma periphery. The incident pump power density is high enough to overcome the collisional homogeneous threshold. For C-Mod plasma parameters, the growth rate of ion sound quasi-modes is found to be typically smaller by an order of magnitude than that of ion cyclotron quasi-modes. When considering the convective threshold near the plasma edge, convective growth due to parallel coupling rather than perpendicular coupling is likely to be responsible for the observed strength of the sidebands. To demonstrate the improved LHCD efficiency in high density plasmas, an additional launcher has been designed. In conjunction with the existing launcher, this new launcher will allow access to an ITER-like high single pass absorption regime, replicating the JLH (r) expected in ITER. The predictions from the time domain discharge scenarios, in which the two launchers are used, will be also presented.United States. Dept. of Energy (Award No. DE-FC02-99ER54512)United States. Dept. of Energy (Award No. DE-AC02-76CH03073

    Assessment of a field-aligned ICRF antenna

    Get PDF
    Impurity contamination and localized heat loads associated with ion cyclotron range of frequency (ICRF) antenna operation are among the most challenging issues for ICRF utilization.. Another challenge is maintaining maximum coupled power through plasma variations including edge localized modes (ELMs) and confinement transitions. Here, we report on an experimental assessment of a field aligned (FA) antenna with respect to impurity contamination, impurity sources, RF enhanced heat flux and load tolerance. In addition, we compare the modification of the scrape of layer (SOL) plasma potential of the FA antenna to a conventional, toroidally aligned (TA) antenna, in order to explore the underlying physics governing impurity contamination linked to ICRF heating. The FA antenna is a 4-strap ICRF antenna where the current straps and antenna enclosure sides are perpendicular to and the Faraday screen rods are parallel to the total magnetic field. In principle, alignment with respect to the total magnetic field minimizes integrated Eāˆ„ (electric field along a magnetic field line) via symmetry. Consistent with expectations, we observed that the impurity contamination and impurity source at the FA antenna are reduced compared to the TA antenna. In both L and H-mode discharges, the radiated power is 20ā€“30% lower for a FA-antenna heated discharge than a discharge heated with the TA-antennas. Further we observe that the fraction of RF energy deposited upon the antenna is less than 0.4 % of the total injected RF energy in dipole phasing. The total deposited energy increases significantly when the FA antenna is operated in monopole phasing. The FA antenna also exhibits an unexpected load tolerance for ELMs and confinement transitions compared to the TA antennas. However, inconsistent with expectations, we observe RF induced plasma potentials to be nearly identical for FA and TA antennas when operated in dipole phasing. In monopole phasing, the FA antenna has the highest plasma potentials and poor heating efficiency despite calculations indicating low integrated Eāˆ„. In mode conversion heating scenario, no core waves were detected in the plasma core indicating poor wave penetration. For monopole phasing, simulations suggest the antenna spectrum is peaked at very short wavelength and full wave simulations show the short wavelength has poor wave penetration to the plasma core.United States. Dept. of Energy (DOE award DE-FC02-99ER54512)United States. Dept. of Energy (Fusion Energy Postdoctoral Research Program administered by ORISE

    Investigation of RF-enhanced plasma potentials on Alcator C-Mod

    Get PDF
    Radio frequency (RF) sheath rectification is a leading mechanism suspected of causing anomalously high erosion of plasma facing materials in RF-heated plasmas on Alcator C-Mod. An extensive experimental survey of the plasma potential (Ī¦[subscript P]) in RF-heated discharges on C-Mod reveals that significant Ī¦[subscript P] enhancement (>100 V) is found on outboard limiter surfaces, both mapped and not mapped to active RF antennas. Surfaces that magnetically map to active RF antennas show Ī¦[subscript P] enhancement that is, in part, consistent with the recently proposed slow wave rectification mechanism. Surfaces that do not map to active RF antennas also experience significant Ī¦[subscript P] enhancement, which strongly correlates with the local fast wave intensity. In this case, fast wave rectification is a leading candidate mechanism responsible for the observed enhancement.United States. Dept. of Energy (DE-FC02-99ER54512

    High-field side scrape-off layer investigation: Plasma profiles and impurity screening behavior in near-double-null configurations

    Get PDF
    New experiments on Alcator C-Mod reveal that the favorable impurity screening characteristics of the high-field side (HFS) scrape-off layer (SOL), previously reported for single null geometries, is retained in double null configurations, despite the formation of an extremely thin SOL. In balanced double-null, nitrogen injected locally into the HFS SOL is better screened by a factor of 2.5 compared to the same injection into the low field side (LFS) SOL. This result is insensitive to plasma current and Greenwald fraction. Nitrogen injected into the HFS SOL is not as well screened (only a factor of 1.5 improvement over LFS) in unbalanced double-null discharges, when the primary divertor is in the direction of BƗāˆ‡B. In this configuration, impurity ā€˜plumeā€™ emission patterns indicate that an opposing E Ɨ B drift competes with the parallel impurity flow to the divertor. In balanced double-null plasmas, the dispersal pattern exhibits a dominant E Ɨ B motion. Unbalanced discharges with the primary divertor opposite the direction of BƗāˆ‡B exhibit excellent HFS screening characteristics ā€“ a factor of 5 enhancement compared to LFS. These data support the idea that future tokamaks should locate all RF actuators and close-fitting wall structures on the HFS and employ near-double-null magnetic topologies, both to precisely control plasma conditions at the antenna/plasma interface and to maximally mitigate the impact of local impurity sources arising from plasma-material interactions. Keywords: Alcator C-Mod; Impurity screening; Double null; High field side scrape-off layerUnited States. Department of Energy (Contract DE-FC02-99ER54512

    Measurement of LHCD edge power deposition through modulation techniques on Alcator C-Mod

    Get PDF
    The efficiency of LHCD on Alcator C-Mod drops exponentially with line average density. At reactor relevant densities (> 1 Ā· 1020 [m[-3 superscript]]) no measurable current is driven. While a number of causes have been suggested, no specific mechanism has been shown to be responsible for the loss of current drive at high density. Fast modulation of the LH power was used to isolate and quantify the LHCD deposition within the plasma. Measurements from these plasmas provide unique evidence for determining a root cause. Modulation of LH power in steady plasmas exhibited no correlated change in the core temperature. A correlated, prompt response in the edge suggests that the loss in efficiency is related to a edge absorption mechanism. This follows previous results which found the generation of n||-independent SOL currents. Multiple Langmuir probe array measurements of the conducted heat conclude that the lost power is deposited near the last closed flux surface. The heat flux induced by LH waves onto the outer divertor is calculated. Changes in the neutral pressure, ionization and hard X-ray emission at high density highlight the importance of the active divertor in the loss of efficiency. Results of this study implicate a mechanism which may occur over multiple passes, leading to power absorption near the LCFS

    Comparison of tungsten nano-tendrils grown in Alcator C-Mod and linear plasma devices

    Get PDF
    Growth of tungsten nano-tendrils (ā€œfuzzā€) has been observed for the first time in the divertor region of a high-power density tokamak experiment. After 14 consecutive helium L-mode discharges in Alcator C-Mod, the tip of a tungsten Langmuir probe at the outer strike point was fully covered with a layer of nano-tendrils. The depth of the W fuzz layer (600 Ā± 150 nm) is consistent with an empirical growth formula from the PISCES experiment. Re-creating the C-Mod exposures as closely as possible in Pilot-PSI experiment can produce nearly-identical nano-tendril morphology and layer thickness at surface temperatures that agree with uncertainties with the C-Mod W probe temperature data. Helium concentrations in W fuzz layers are measured at 1ā€“4 at.%, which is lower than expected for the observed sub-surface voids to be filled with several GPa of helium pressure. This possibly indicates that the void formation is not pressure driven.United States. Dept. of Energy (Award DE-SC00-02060
    • ā€¦
    corecore